Gravitational Waves Do Not Carry Energy-Momentum
DOI: 229 Downloads 13102 Views
                            Author(s)
                        
                            Abstract
                            From a geometric perspective, we proved the following conclusions, that are against mainstream scholars’ viewpoint. (i) Vanishing of the covariant divergence of matter energy momentum flux density in entire spacetime is a conservation law of matter energy-momentum. It reads the net increase of matter energy-momentum in any infinitesimal neighborhood of spacetime is zero. Hence, introducing gravitational energy-momentum does not save, but destroys the law of energy-momentum conservation. (ii) Interaction or force in physics always means exchange of energy-momentum. The spacetime metric field (gravitational field in general relativity) does not exchange energy-momentum with all mass points and matter fields. Therefore, the metric field of spacetime does not carry energy-momentum, it's not a force field, and gravity is not a natural force. The spacetime metric field is the geometrical aspect of moving matter 4-dimensional continuum. It is not a matter field itself.
                        
                            Keywords
                            gravitational energy-momentum, energy-momentum conservation in general relativity
                        
                            Cite this paper
                            Zhaoyan Wu, 
                            Gravitational Waves Do Not Carry  Energy-Momentum
                            , SCIREA Journal of Physics.
                            Volume 5, Issue 1, February 2020 | PP. 1-28.
                            
                        
                            References
                        
| [ 1 ] | A. Einstein, Sitzungsber K. preuss. Akacl. Wiss. 2, 688(1916) | 
| [ 2 ] | A. Einstein, Sitzungsber K. preuss. Akacl. Wiss. 2, 154(1918) | 
| [ 3 ] | B.P. Abbott, et. al. (LIGO), Phys. Rev. Lett. 116, 061102 (2016) | 
| [ 4 ] | R.P. Feynman, et al, Feynman Lectures on Gravitation, Westview Press, Boulder (2002). | 
| [ 5 ] | B.P. Abbott, et al. Phys. Rev. Lett. 116, 241103 (2016). | 
| [ 6 ] | B.P. Abbott, et al. Phys. Rev. Lett. 118, 221101 (2017). | 
| [ 7 ] | B.P. Abbott, et al. Phys. Rev. Lett. 119, 141101 (2017). | 
| [ 8 ] | B.P. Abbott, et al. Phys. Rev. Lett. 119, 161101 (2017) | 
| [ 9 ] | Z. Wu, Commun. Theor. Phys. 65 716-730 (2016). | 
| [ 10 ] | A. Einstein, Berl. Ber. 178 (1915), 448 (1918). | 
| [ 11 ] | H. Bondi, Proc. R. Soc. Lond. A 427 249-258 (1990). | 
| [ 12 ] | S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). | 
| [ 13 ] | J.M. Nester, et al, Dynamic geometry and Gravitational Energy, (2004). | 
| [ 14 ] | H. Bauer, Physikalische Zeitschrift, 19 163 (1918). | 
| [ 15 ] | L.D. Landau and E.M.Lifshitz, The Classical Theory of Fields, 2nd ed. (Reading, Mass.: Addison-Wesley, 1962). | 
| [ 16 ] | R.C. Tohnan, Phys. Rev. 35, 875 (1930). | 
| [ 17 ] | A. Trautman, in Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New York, 1962), 169-198. | 
| [ 18 ] | Papapetrou, Proc.Roy. Irish Acad. A 52, 11-23 (1948). | 
| [ 19 ] | P.G. Bergmann and R. Thompson, Phys. Rev. 89, 400-407 (1953). | 
| [ 20 ] | C. Mller, Ann. Phys. 4, 347-371 (1958). | 
| [ 21 ] | C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973). | 
| [ 22 ] | A. Komar, Physical Rev. 113 (1959) 934. | 
| [ 23 ] | R. Arnowitt, S. Deser, and C.W. Misner, The Dynamics of General Rela, tivity, in Gravitation: A Introduction to Current Research, ed. L. Witten, Wiley, New York (1962). | 
| [ 24 ] | H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Proc. Roy. Soc. London A 269 {1962} 21. | 
| [ 25 ] | R. Schoen and S.-T. Yau, Commun. Math. Phys. 79, 231 (1981). | 
| [ 26 ] | E. Witten, Commun. Math. Phys. 80, 381(1981). | 
| [ 27 ] | L.B. Szabados, Living Rev. Relativity 7, 4 (2004). | 
| [ 28 ] | J.L. Synge, Relativity: The General Theory, North-Holland Publishing Company, Amsterdam (1960). | 
 
                    