Gravitational Waves Do Not Carry Energy-Momentum
DOI: 223 Downloads 5922 Views
Author(s)
Abstract
From a geometric perspective, we proved the following conclusions, that are against mainstream scholars’ viewpoint. (i) Vanishing of the covariant divergence of matter energy momentum flux density in entire spacetime is a conservation law of matter energy-momentum. It reads the net increase of matter energy-momentum in any infinitesimal neighborhood of spacetime is zero. Hence, introducing gravitational energy-momentum does not save, but destroys the law of energy-momentum conservation. (ii) Interaction or force in physics always means exchange of energy-momentum. The spacetime metric field (gravitational field in general relativity) does not exchange energy-momentum with all mass points and matter fields. Therefore, the metric field of spacetime does not carry energy-momentum, it's not a force field, and gravity is not a natural force. The spacetime metric field is the geometrical aspect of moving matter 4-dimensional continuum. It is not a matter field itself.
Keywords
gravitational energy-momentum, energy-momentum conservation in general relativity
Cite this paper
Zhaoyan Wu,
Gravitational Waves Do Not Carry Energy-Momentum
, SCIREA Journal of Physics.
Volume 5, Issue 1, February 2020 | PP. 1-28.
References
[ 1 ] | A. Einstein, Sitzungsber K. preuss. Akacl. Wiss. 2, 688(1916) |
[ 2 ] | A. Einstein, Sitzungsber K. preuss. Akacl. Wiss. 2, 154(1918) |
[ 3 ] | B.P. Abbott, et. al. (LIGO), Phys. Rev. Lett. 116, 061102 (2016) |
[ 4 ] | R.P. Feynman, et al, Feynman Lectures on Gravitation, Westview Press, Boulder (2002). |
[ 5 ] | B.P. Abbott, et al. Phys. Rev. Lett. 116, 241103 (2016). |
[ 6 ] | B.P. Abbott, et al. Phys. Rev. Lett. 118, 221101 (2017). |
[ 7 ] | B.P. Abbott, et al. Phys. Rev. Lett. 119, 141101 (2017). |
[ 8 ] | B.P. Abbott, et al. Phys. Rev. Lett. 119, 161101 (2017) |
[ 9 ] | Z. Wu, Commun. Theor. Phys. 65 716-730 (2016). |
[ 10 ] | A. Einstein, Berl. Ber. 178 (1915), 448 (1918). |
[ 11 ] | H. Bondi, Proc. R. Soc. Lond. A 427 249-258 (1990). |
[ 12 ] | S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972). |
[ 13 ] | J.M. Nester, et al, Dynamic geometry and Gravitational Energy, (2004). |
[ 14 ] | H. Bauer, Physikalische Zeitschrift, 19 163 (1918). |
[ 15 ] | L.D. Landau and E.M.Lifshitz, The Classical Theory of Fields, 2nd ed. (Reading, Mass.: Addison-Wesley, 1962). |
[ 16 ] | R.C. Tohnan, Phys. Rev. 35, 875 (1930). |
[ 17 ] | A. Trautman, in Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New York, 1962), 169-198. |
[ 18 ] | Papapetrou, Proc.Roy. Irish Acad. A 52, 11-23 (1948). |
[ 19 ] | P.G. Bergmann and R. Thompson, Phys. Rev. 89, 400-407 (1953). |
[ 20 ] | C. Mller, Ann. Phys. 4, 347-371 (1958). |
[ 21 ] | C.W. Misner, K.S. Thorne and J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973). |
[ 22 ] | A. Komar, Physical Rev. 113 (1959) 934. |
[ 23 ] | R. Arnowitt, S. Deser, and C.W. Misner, The Dynamics of General Rela, tivity, in Gravitation: A Introduction to Current Research, ed. L. Witten, Wiley, New York (1962). |
[ 24 ] | H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Proc. Roy. Soc. London A 269 {1962} 21. |
[ 25 ] | R. Schoen and S.-T. Yau, Commun. Math. Phys. 79, 231 (1981). |
[ 26 ] | E. Witten, Commun. Math. Phys. 80, 381(1981). |
[ 27 ] | L.B. Szabados, Living Rev. Relativity 7, 4 (2004). |
[ 28 ] | J.L. Synge, Relativity: The General Theory, North-Holland Publishing Company, Amsterdam (1960). |