Kinetics of Aging of Large Colloidal Quantum Dots of Lead Selenide

Volume 7, Issue 3, June 2022     |     PP. 42-61      |     PDF (992 K)    |     Pub. Date: June 24, 2022
DOI: 10.54647/chemistry15265    101 Downloads     95862 Views  


Witold Palosz, Brimrose Corporation of America, Sparks, MD
Sudhir Trivedi, Brimrose Corporation of America, Sparks, MD
Janet L. Jensen, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD

Effectiveness of passivation of large PbSe colloidal quantum dots (CQD) (first excitonic peak position 2 - 2.8 μm) using commonly used passivants is studied. The kinetics of oxidation over a period of up to more than one year is investigated. The effect of in-situ passivation with CdCl2, NH4Cl, Tetrabutylammonium Iodide (TBAI), and 3-Chloro-1-propanethiol (ClPTh), and of Solid-State Ligand Exchange (SSLE) using 3-Mercaptopriopionic Acid (MPA), TBAI, and 1,2-Ethanedithiol (EDT) is studied. Oxidation under different oxygen concentrations and aging of solutions is investigated. It is found that non-passivated CQDs oxidize, in the first two hours in air, at the initial rate of 2-5 layers a day. Passivation with CdCl2 or NH4Cl may reduce that initial rate by more than two orders of magnitude. Solid State Ligand Exchange process with TBAI as substituting ligand reduces the initial oxidation rate for non-passivated grains by an order of magnitude. For passivated materials SSLE process may add further protection, particularly when TBAI is used as substituting agent. EDT used as substituting agent apparently de-passivates grains. Under low concentration of Oxygen (<50 PPM) the oxidation rate can be reduced to about one oxidized Pb atom per grain over 10-day period for passivated and then SSLE'd films. TBAI was found to be the most effective both as in-situ passivant and as exchange ligand in SSLE process. The specific results of our investigation show, that meeting conditions of acceptable (negligent) oxidation (for some specific applications) may be feasible with moderately stringent technical requirements. Long term stability of devices, using typical passivation and SSLE methods, would require encapsulation.

PbSe; colloidal quantum dots; aging; passivation

Cite this paper
Witold Palosz, Sudhir Trivedi, Janet L. Jensen, Kinetics of Aging of Large Colloidal Quantum Dots of Lead Selenide , SCIREA Journal of Chemistry. Volume 7, Issue 3, June 2022 | PP. 42-61. 10.54647/chemistry15265


[ 1 ] Fan, J.Z., Liu, M., Voznyy, O., Sun, B., Levina, L., Quintero-Bermudez, R., Liu, M., Ouellette, O., Garcia, F.P., Hoogland, S., and Sargent, E.H. 2017. Halide Re-Shelled Quantum Dot Inks for Infrared Photovoltaics. ASC Appl. Mater. Interface, 9, pp. 37536-37541.
[ 2 ] Lan, X., Voznyy, O., Kiani, A., Garcia, F.P., Abbas, A.A., Kim, G-H, Liu, M., Yang, Z., Walters G.,, Xu, J. Yuan, M., Ning, Z., Fan, F., Kanjanaboos, P., Kramer, I., Zhitomirsky, D., Lee, P., Perelgut, A., Hoogland, S., and Sargent, E.H., 2016. Passivation using molecular halides increases quantum dot solar cell performance. Adv. Mater, 28 pp. 299-304.
[ 3 ] Ahmad, W., He, J., Liu, Z., Xu, K., Chen, Z., Yang, X., Li, D., Xia, Y., Zhang, J., and Chen, C. 2019. Lead Selenide (PbSe) colloidal quantum dot solar cells with >10% efficiency. Adv. Mater., pp. 1900593.
[ 4 ] Zhitomirsky, D., Voznyy, O., Levina, L., Hoogland, S., Kemp, K.W., Ip, A.H., Thon, S.M., and Sargent, E.H. 2014. Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nature Comm. 5, pp. 3803-3811.
[ 5 ] Ip, A.H., Kiani, A., Kramer, I.J., Voznyy, O., Movahed, H.F., Levina, L., Adachi, M.M., Hoogland, S., and Sargent, H., 2015. Infrared colloidal quantum doe photovoltaics via coupling enhancement and agglomeration suppression. ACS Nano 9 (9), pp. 8833-8842.
[ 6 ] Zhang, J., Gao, J., Miller, E.M., Luther, J.M., and Beard, M.C.. 2014. Diffusion-Controlled Synthesis of PbS and PbSe Quantum Dots with in Situ Halide Passivation for Quantum Dot Solar Cells. ASCNano 8 (1), pp. 614-622.
[ 7 ] Zhang, J., Gao, J., Church, C.P., Miller, E.M., Luther, J.M., Klimov, V.I., and Beard, M.C. 2014. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Nano Letters 14, pp. 6010-6015.
[ 8 ] Crisp, R.W., Kroupa, D.M., Marshall, A.R., Miller, E.M., Zhang, J., Beard, M.C., and Luther, J.M. 2015 Metal halide solid-state surface treatment for high efficiency PbS and PbSe QD solar cells. Sci. Reports 5, 9945.
[ 9 ] Fu, C., Wang, H., Song, T., Zhang, L., Li, W., He, B., Sulaman, M., Yang, S., and Zou, B. 2015. Stability enhancement of PbSe quantum dots via post-synthetic ammonium chloride treatment for a high-performance infrared photodetector. Nanotechnology 27, 065201.
[ 10 ] Thambidurai, M., Jang, T Y., Shapiro, A., Yuan, G., Xiaonan, H., Xuechao, Y., Wang, Q.J., Lifshitz, E., Demir, H.V., and Dang, C. 2017. High performance infrared photodetectors up to 2.8 mm wavelength based on lead selenide colloidal quantum dots. Optical Materials Express 7 (7), pp. 2326-2335.
[ 11 ] Shapiro, A., Jang, Y., Rubin-Brusilovski, A., Budniak, A. K., Horani, F., Sashchiuk, A., and Lifshitz, E.. 2016. Tuning optical activity of IV−VI colloidal quantum dots in the short-wave infrared (SWIR) spectral regime. Chemistry of Materials 28, pp. 6409-6416.
[ 12 ] Woo, J.Y., Ko, J.-H., Song, J.H., Kim, K., Choi, H., Kim, Y.-H., Lee, D.C., and Jeong, S. 2014. Ultrastable PbSe nanocrystal quantum dots via in situ formation of atomically thin halide ddlayers on PbSe(100). J. Am. Chem. Soc. 136, pp. 8883-8886.
[ 13 ] Baumgardner, W.J., Whitham, K., and Hanrah, T. 2013. Confined-but-connected quantum solids via controlled ligand displacement. Nano Letters 13, pp. 3225-3231.
[ 14 ] Peters, J.L., van der Bok, J.C., Hofman, J.P., and Vanmaekelbergh, D. 2019. Hybrid oleate-iodide ligand shell for air-stable PbSe nanocrystals and superstructures. Chem. Mater. 31 (15), pp. 5808-5815.
[ 15 ] Ning, Z., Voznyy, O., Pan, J., Hoogland, S., Adinolfi, V., Xu, J., Li, M., Kirmani, A.R., Sun, J.-P., Minor, J., Kemp, K.W., Dong, H., Rollny, L., Labelle, A., Carey, G., Sutherland, B., Hill, I., Amassian, A., Liu, H., Tang, J., Bakr, O.M., and Sargent, E.H. 2015. Air-stable n-type colloidal quantum dot solids. Nature Mat. 13, pp. 822-828.
[ 16 ] Weldman, M.C., Beck, M.E., Hoffman, R.S., Prins, F., and Tisdale, W. 2014. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control. ACS Nano 8 (6), pp. 6363-6371.
[ 17 ] Yuan, L., Patterson, R., Cao, W., Zhang, Z., Zhang, Zh., Stride, A.A., Reece, P., Conibeer, G., and Huang, S. 2015. Air-stable PbS quantum dots synthesized with slow reaction kinetics via a PbBr2 precursor. RSC Advances 5 (2015) pp. 68579-68586.
[ 18 ] Ip, A. H., Thon, S.M., Hoogland, S., Voznyy, O., Zhitomirsky, D., Debnath, R., Levina, L., Rollny, L.R., Carey, G.H., Fisher, A., Kemp, K.W., Kramer, I.J., Ning, Z., Labelle, A.J., Chou, K.W., Amasian, A., and Sargent, E.H. 2012. Hybrid passivated colloidal quantum dot solids. Nature Technol. 7 pp. 577-582.
[ 19 ] Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina,, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K.W., Fisher, A., Amassian, M., Asbury, J.B., and Sargent, E.H. 2011. Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature Mat. 10 pp. 765-771.
[ 20 ] Sulaman, M., Yang, S., Song, T., Wang, H., Wang, Y., He, B., Dong, M., Tang, Y., Song, Y., and Zou, B. 2016. High performance solution-processed infrared photodiode based on ternary PbSxSe1-x colloidal quantum dots. RSC Adv. 6, pp. 87730-87737.
[ 21 ] Xu, F., Gerlein, L.F., Ma, X., Haughn, C.R., Doty, M.F., and Cloutier, S.G. 2015. Impact of different surface ligands on the optical properties of PbSe quantum dot solids. Materials 8, pp. 1858-1870.
[ 22 ] Zhitomirsky, D., Furukawa, M., Tang, J., Stadler, P., Hoogland, S., Voznyy, O., Liu, H., and Sargent, E.H. 2012. N-type colloidal-quantum-dot solids for photovoltaics. Adv. Mat. 24, pp. 6181-6185.
[ 23 ] Sandeep, C.S.S., Azpiroz, J.M., Evers, W.H., Boehme, S.C., Moreels, I., Kinge, S., Siebbeles, L.D.A., Infante, I., and Houtepen, A.J. 2014. Epitaxially connected PbSe quantum dot films: controlled neck formation and optoelectronic properties. ACS Nano 8 (11), pp.11499-11511.
[ 24 ] Giansante, C., Carbone, L., Giannini, C., Altamura, D., Ameer, Z., Maruccio, G., Loiudice, A., Belviso, M.R., Cozzoli, P.D., Rizzo, A., and Gigli, G. 2014. Surface chemistry of arenethiolate-capped PbS quantum dots and application as colloidally stable photovoltaic ink. Thin Solid Films 560, pp. 2-9.
[ 25 ] Luther, J.M., Law, M., Song, Q., Perkins, C.L., Beard, M.C., and Nozik, A.J. 2008. Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-Ethanedithiol. ACS Nano 2 (2) pp. 271-280.
[ 26 ] Pan, Y., Sohel, M.A., Pan, L,. Wei, Z., Bai, H., Tamargo, M.C., and John R.. 2015. Syntehesis of air-stable Pbse quantum dots using PbCl2-oleyamine system. Materials Today: Proceedings 2, pp. 281-286.
[ 27 ] Moreels, I., Justo, Y., De Geyter, B., Haustraete, K., Martins, J.C. , and Hens, Z. 2011. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 5 (3), pp. 2004-2012.
[ 28 ] Moreels, I., Fritzinger, B., Martins, J.C., and Hens, Z. 2008. Surface Chemistry of Colloidal PbSe Nanocrystals. J. Am. Chem. Soc. 130, pp. 15081-15086.
[ 29 ] Palosz, W., Trivedi, S., DeCuir Jr., E., Wijewarnasuriya, P.S., Thon, S.M., Cheng, Y., Lu, C., and Jensen, J.L. 2021. Synthesis and characterization of large PbSe colloidal quatum dots. Particle and Part. Syst. Character. 38 (6), pp.2000285.
[ 30 ] Moreels, I., Lambert, K., De Muynck, D., Vanhaecke, F., Poelman, D., Martins, J. C., Allan, G., and Hens, Z. 2007. Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, pp. 6101-6106.
[ 31 ] Bartnik, A.C. Ph.D. Thesis, Cornell University (2011).